Synthesis of functionalized trifluorovinyl compounds

Chang-Ming Hu*, Qiao-Sheng Hu, Yao-Ling Qiu and Jian Chen

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032 (China)

Abstract

Various functionalized trifluorovinyl compounds have been prepared by the addition of $BrCF_2CFClBr$ to functionalized alkenes using bimetal redox systems as initiators, followed by dehalogenation with zinc powder.

Introduction

In recent years, functionalized trifluorovinyl compounds have attracted increasing attention, as they act as monomers in polymerizations and can be expected to undergo selective reactions at the trifluorovinyl or functional group site. However, to date few papers have appeared regarding the preparation of such compounds [1, 2]. We now report a facile and effective synthesis of the title compounds.

Results and discussion

Recently, we have found that certain redox systems can effectively initiate the addition of R_tX to electronrich as well as to electron-deficient alkenes [3–5] even when such polyfluoroalkyl halides contain vicinal dihalogens. Thus the preparation of trifluorovinyl compounds becomes feasible using BrCF₂CFClBr as a precursor for the trifluorovinyl group.

After screening a series of the reported redox systems, we found bimetal redox systems such as Cp_2TiCl_2/Fe and $CrCl_3 \cdot 6H_2O/Fe$ capable of efficiently promoting the addition of polyfluoroalkyl halide to both electronrich and electron-deficient alkenes without dehalogenation. The results are listed in Table 1.

BrCF₂CFClBr added readily to electron-rich alkenes (Table 1, Runs No. 1, 2 and 3) giving addition products in excellent yield. With 1,5-hexadiene (Run No. 2), in order to obtain the 1:1 addition product it was necessary to include a slight excess of the 1,5-diene.

In the case of electron-deficient alkenes, a longer reaction time, a higher temperature and usually a greater amount of catalysts were required. Satisfactory results were obtained with an α,β -unsaturated ketone, amide and nitrile. In contrast, ethyl methylacrylate did not significantly affect the reaction (Run No. 5). At the same time, hydrodebromination took place immediately.

The solvent seems to play an important role in such reactions. Experiments showed that when Cp_2TiCl_2/Fe was used as the bimetal redox system, THF was suitable for the reaction. If EtOH was used as the solvent instead of THF in such reactions, complete dehalogenation occurred and very little product could be obtained. When $CrCl_3 \cdot 6H_2O/Fe$ was used as the bimetal redox system, then either THF or EtOH could be used.

In these addition products, vicinal dihalogens could be dehalogenated without any difficulty under mild conditions using zinc powder containing a little CuCl₂ in DMF. ¹⁹F NMR spectroscopy showed that dehalogenation was complete after stirring for 0.5 h at room temperature. However, in Table 2, Runs No. 1–3, if the bromine atom needed to be reduced during the course of dehalogenation, heating at 50 °C for c. 6 h was necessary. The complete results are listed in Table 2.

In summary, functionalized trifluorovinyl compounds may be readily obtained by the addition of $BrCF_2CFClBr$ to various functionalized alkenes promoted by bimetal redox systems, followed by dehalogenation of the adducts with zinc powder.

Experimental

All melting and boiling points are reported uncorrected. ¹H NMR spectra were measured with external TMS as the standard by means of a Varian EM-360A spectrometer at 60 MHz. ¹⁹F NMR spectra were mea-

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)03015-E

TABLE 1. Addition of BrCF₂CFClBr to functionalized alkenes

^aMethod A: Cp₂TiCl₂/Fe/THF; molar ratio of 1/2/Fe/Cp₂TiCl₂ = 1.2-1.5:1:0.5-1.5:0.02. The reactions were run at 50-60 °C for c. 20 h.

Method B: $CrCl_3 \cdot 6H_2O/Fe/THF$ or EtOH; molar ratio of $1/2/Fe/CrCl_3 \cdot 6H_2O = 1.2-1.5:1:0.5-1.5:0.1-0.2$. The reactions were run at 50-60 °C for c. 20 h.

TABLE 2. Dehalogenation of 3 with Zn/CuCl₂/DMF^a

BrCF ₂ CFClCH	$_{2}CH(CH_{2})_{n}FG \longrightarrow CF_{2}=C$	CFCH ₂ CH(CH ₂), FG
, i	x	x
	(3)	(4)
(X = Br or H)		

Run No.	Adducts 3	Time (h)	Products 4 (% yield)
1	BrCF ₂ CFCl Br	0.5	$CF_2 = CF$ Br (4a) (90%)
2	BrCE-CECICH-CHBr	0.5	CE₁=CFCH₁CHBr
2		0.0	
	$CH_2CH_2CH = CH_2$ (3b)		$CH_2CH_2CH = CH_2$ (4b) (80%)
3	BrCF ₂ CFClCH ₂ CHBr	6.0	$CF_2 = CFCH_2CH_2$
	$(CH_2)_8COOMe$ (3c)		(CH ₂) ₈ COOMe (4c) (85%) ^b
4	BrCF,CFClCH,CH,COOEt (3d)	0.5	$CF_{2} = CFCH_{2}CH_{2}COOEt$ (4d) (95%)
5	BrCF ₂ CFClCH ₂ CH(Me)COOEt (3e)	0.5	$CF_2 = CFCH_2CH(Me)COOEt$ (4e) (93%)
6	BrCF ₂ CFClCH ₂ CH ₂ CONH ₂ (3f)	0.5	$CF_2 = CFCH_2CH_2CONH_2$ (4f) (92%)
7	$BrCF_2CFClCH_2CH_2CN$ (3g)	0.5	$CF_2 = CFCH_2CH_2CN$ (4g) (92%)
8	BrCF ₂ CFClCH ₂ CH ₂ COCH ₃ (3h)	0.5	$CF_2 = CFCH_2CH_2COCH_3$ (4h) (90%)

^aReactions performed at room temperature unless otherwise indicated. Molar ratio of $3/Zn/CuCl_2 = 1:1:0.05$. ^bReaction carried out at 50 °C.

sured with external CF₃COOH as the standard with upfield shifts positive using a Varian EM-360L spectrometer at 56.4 MHz. Samples were measured neat unless indicated otherwise. IR spectra were recorded as films for liquid samples on a Shimadzu IR-440

spectrometer. Mass spectra were recorded by means of a Finnigan GC-MS 4021 mass spectrometer. Methyl vinyl ketone was freshly distilled before use. All other chemicals were of analytical grade and were used without further purification.

General procedure for the addition of BrCF₂CFClBr to functionalized alkenes

Method A

A mixture consisting of Fe powder (5–15 mmol), 2 mol% of Cp₂TiCl₂, alkene (10 mmol) and BrCF₂CFClBr (12–15 mmol) was stirred in 25 ml THF at 50–60 °C. The reaction was monitored by GC and ¹⁹F NMR methods. After completion of the reaction, the mixture was poured into water (20 ml) and filtered. The residue was washed with ether and the combined filtrates extracted with ether (3×20 ml). The ether extract was washed with brine and dried (Na₂SO₄). Distillation or flash chromatography gave the corresponding product.

Method B

A mixture consisting of Fe powder (5–15 mmol), 10–20 mol% of $CrCl_3 \cdot 6H_2O$, alkene (10 mmol) and BrCF₂CFClBr (12–15 mmol) was stirred in EtOH or THF at 50–60 °C. After the reaction was complete, the mixture was treated in the same manner as in Method A.

3-(3'-Bromo-2'-chloro-2',3',3'-trifluoropropyl)-4-bromomethyltetrahydrofuran (**3a**): B.p. 95–95 °C/3 mmHg. ¹H NMR δ : 2.00–3.40 (m, 4H); 3.50–4.51 (m, 6H) ppm. ¹⁹F NMR δ : –17.0 (s, 2F); 38.8 (m, 1F) ppm. MS (*m*/*z*): 373 (M⁺ +1, 19.25); 293 (M⁺ – HBr, 64.32); 54 (CH₂=CH–CH=CH₂, 100). Analysis: Calc. for C₈H₁₀Br₂ClF₃O: C, 25.66; H, 2.67; F, 15.22%. Found: C, 25.72; H, 2.60; F, 15.58%.

5,8-Dibromo-7-chloro-7,8,8-trifluoro-1-octene (3b): B.p. 118-120 °C/18 mmHg. IR ν_{max} (cm⁻¹): 1650 (CH=CH₂). ¹H NMR δ: 2.00-3.80 (m, 6H); 4.50-5.00 (m, 1H); 5.10–6.60 (m, 3H) ppm. ¹⁹F NMR δ : –14.6 (s, 2F); 40.3 (m, 1F) ppm. MS (m/z): 357 (M⁺+1, 1.01); 315 $(M^+ - CH_2CH = CH_2)$ 2.17); 277 $(M^+ + 1 - HBr, 14.15);$ 95 $(CF_2 = CFCH_2, 7.71);$ 81 $(M^+ - BrCF_2CFC)$, 100). Analysis: Calc. for C₈H₁₀Br₂ClF₃: C, 26.81; H, 2.79; Fm 15.90%. Found: C, 27.00; H, 2.65; F, 16.11%.

Methyl 10,13-dibromo-12-chloro-12,13,13-trifluorotridecanoate (3c): IR ν_{max} (cm⁻¹): 1750 (C=O). ¹H NMR δ : 1.30–3.40 (m, 18H); 3.70 (s, 3H); 4.20–4.70 (m, 1H) ppm. ¹⁹F NMR δ : -16.0 (s, 2F); 38.2, 40.5 (2 br s, 0.48F+0.52F) ppm. MS (*m*/*z*): 474 (M⁺, 16.65); 395 (M⁺-Br, 6.73); 74 (CH₃CO₂CH₃, 100). MS (*m*/*z*): Calc. for C₁₄H₂₂Br₂ClF₃O₂, 473.9503. Found, 473.9566.

Ethyl 5-bromo-4-chloro-4,5,5-trifluoro-pentanoate (3d): B.p. 102–104 °C/18 mmHg. IR ν_{max} (cm⁻¹): 1740 (C=O). ¹H NMR δ : 1.40 (t, J=7.0 Hz, 3H); 2.10 (m, 4H, CH₂CH₂); 4.40 (q, J=7.0 Hz, 2H) ppm. ¹⁹F NMR δ : -16.3 (s, 2F); 41.3 (br s, 1F) ppm. MS (m/z): 297 (M⁺+1, 70.50); 271 (M⁺+1-Et, 17.74); 253 (M⁺ - EtOH, 72.77). Analysis: Calc. for C₇H₉BrClF₃O₂: C, 28.26; H, 3.05; F, 19.16%. Found: C, 28.80; H, 3.19; F, 18.72%.

Ethyl 5-bromo-4-chloro-4,5,5-trifluoro-2-methylpentanoate (**3e**): B.p. 71–72 °C/2 mmHg. IR ν_{max} (cm⁻¹) 1725 (C=O). ¹H NMR δ: 1.00–1.35 (m, 6H); 1.55–3.30 (m, 3H); 4.10 (q, *J*=7.0 Hz, 2H) ppm. ¹⁹F NMR δ: -16.5 (s, 2F); 39.0, 41.0 (2 br s, 0.45F+0.55F) ppm. MS (*m/z*): 313 (M⁺+1, 100); 265 (M⁺ – EtO, 18.59). Analysis: Calc. for C₈H₁₁BrClF₃O₂: C, 30.85; H, 3.53; F, 18.30%. Found: C, 31.00; H, 3.27; F, 18.56%.

5-Bromo-4-chloro-4,5,5-trifluoro-pentanamide (**3f**): M.p. 54.0–55.2 °C. IR ν_{max} (cm⁻¹): 3300, 3400 (NH₂); 1650 (C=O). ¹H NMR δ : 2.20–3.10 (m, 4H); 5.50–6.50 (m, 2H) ppm. ¹⁹F NMR δ : -17.0 (s, 2F); 40.7 (m, 1F) ppm. MS (*m/z*): 268 (M⁺ + 1, 32.91); 251 (M⁺ – NH₂, 9.00); 232 (M⁺ – HCl, 90.70); 188 (M⁺ – HCl – CONH₂, 96.40); 152 (M⁺ – HCl – Br, 90.12); 55 (CH₂=CHCO, 100). Analysis: Calc. for C₃H₆BrClF₃NO: C, 22.35; H, 2.23; N, 5.21; F, 21.23%. Found: C, 22.73; H, 1.85; N, 5.07; F, 21.10%.

5-Bromo-4-chloro-4,5,5-trifluoro-pentanenitrile (**3g**): B.p. 65–66 °C/2 mmHg. IR ν_{max} (cm⁻¹): 2180 (CN). ¹H NMR δ : 2.50–3.50 (m, 4H) ppm. ¹⁹F NMR δ : –16.0 (s, 2F); 42.2 (br s, 1F) ppm. MS (*m*/*z*): 251 (M⁺, 100); 216 (M⁺ - Cl, 2.22). Analysis: Calc. for C₅H₄BrClF₃: C, 25.37; H, 1.60; F, 22.76%. Found: C, 25.40; H, 1.60; F, 22.28%.

6-Bromo-5-chloro-5,6,6-trifluoro-2-hexanone (3h): B.p. 65–67 °C/2 mmHg. IR ν_{max} (cm⁻¹): 1725 (C=O). ¹H NMR δ: 2.37 (s, 3H); 2.57–3.27 (m, 4H) ppm. ¹⁹F NMR δ: -17.5 (s, 2F); 39.7 (m, 1F) ppm. MS (*m/z*): 266 (M⁺, 1.99); 187 (M⁺ - HCl - CH₃CO, 3.99); 44 (CH₃CHO, 100). Analysis: Calc. for C₆H₇BrClF₃O: C, 26.92; H, 2.62; F, 21.31%. Found: C, 27.06; H, 2.87; F, 21.42%.

General procedure for the dehalogenation of 3 with $Zn/CuCl_2$

To 20 ml DMF was added 0.65 g (10 mmol) of Zn powder, 0.1 g of CuCl₂ and 10 mmol of **3**. The whole mixture was stirred at room temperature. ¹⁹F NMR spectroscopy showed that dehalogenation was complete after 0.5 h. The reaction mixture was then poured into a 100 ml separating funnel and 10 ml of 5% HCl was added. The whole mixture was then extracted with ether (2×20 ml). The combined extract was washed with a saturated aqueous solution of NaHCO₃, brine and dried (Na₂SO₄). Distillation or flash chromatography gave the corresponding product.

3-(2',3',3'-Trifluoroallyl)-4-bromomethyltetrahydrofuran (4a): B.p. 110–111 °C/20 mmHg. IR ν_{max} (cm⁻¹): 1785 (CF₂=CF). ¹H NMR δ : 2.00–3.10 (m, 4H); 3.20–4.40 (m, 6H) ppm. ¹⁹F NMR δ : 28 (dd, J=100, 40 Hz, 1F); 47.3 (dd, J=120, 100 Hz, 1F); 98.0 (dm, J=120 Hz, 1F) ppm. MS (m/z): 259 (M⁺ + 1, 1.95); 179 (M⁺ + 1 – HBr, 10.41); 165 (M⁺ – CH₂Br, 100); 95 $(CF_2=CFCH_2. 60.94)$; 81 $(CF_2=CF, 5.48)$. Analysis: Calc. for $C_8H_{10}BrF_3O$: C, 37.06; H, 3.86; F, 22.01%. Found: C, 37.37; H, 3.55; F, 22.44%.

4-Bromo-1,1,2-trifluoro-1,7-octadiene (4b): B.p. 45–47 °C/2 mmHg. IR ν_{max} (cm⁻¹): 1785 (CF₂=CF); 1630 (CH=CH₂). ¹H NMR δ : 1.80–3.30 (m, 6H); 4.00–4.50 (m, 1H); 4.90–5.50 (m, 2H); 5.60–6.30 (m, 1H) ppm. ¹⁹F NMR δ : 27.3 (dd, J=100, 40 Hz, 1F); 45.9 (dd, J=120, 100 Hz, 1F); 98.5 (dm, J=120 Hz, 1F) ppm. MS (m/z): 242 (M⁺, 2.32); 163 (M⁺ – Br, 18.44); 121 (M⁺ – Br – CH₂CH=CH₂, 31.34); 108 (CF₂=CFCH=CH₂, 21.83); 95 (CF₂=CFCH₂, 50.70); 81 (CF₂=CF, 20.50); 67 (CH₂=CHCH₂CH=CH₂, 100). Analysis: Calc. for C₈H₁₀BrF₃: C, 39.67; H, 4.13; F, 23.45%. Found: C, 40.13; H, 4.07; F, 24.76%.

Methyl 12,13,13-trifluoro-12-tridecanoate (4c): B.p. 108–110 °C/2 mmHg. IR ν_{max} (cm⁻¹): 1785 (CF₂=CF); 1750 (C=O). ¹H NMR δ : 1.07–1.87 (m, 16H); 1.87–2.57 (m, 4H); 3.60 (s, 3H) ppm. ¹⁹FNMR δ : 30.5 (dd, J = 100, 40 Hz, 1F); 49.3 (dd, J = 120, 100 Hz, 1F); 97.3 (dm, J = 120 Hz, 1F) ppm. MS (m/z): 281 (M⁺ + 1, 20.16); 249 (M⁺ – MeO, 5.73); 95 (CF₂=CFCH₂, 29.02); 81 (CF₂=CF, 7.38); 74 (CH₃CO₂CH₃, 100). Analysis: Calc. for C₁₄H₂₃F₃O₂: C, 60.02; H, 8.21; F, 20.86%. Found: C, 60.58; H, 8.01; F, 20.86%.

Ethyl 4,5,5-trifluoro-4-pentenoate (4d): B.p. 90–92 °C/100 mmHg. IR ν_{max} (cm⁻¹): 1785 (CF₂=CF); 1725 (C=O). ¹H NMR δ : 1.00 (t, J=7.0 Hz, 3H); 2.20–2.80 (m, 4H); 3.9 (q, J=7.0 Hz, 2H) ppm. ¹⁹F NMR δ : 27.5 (dd, J=100, 40 Hz, 1F); 46.0 (dd, J=120, 100 Hz, 1F); 98.5 (dm, J=120 Hz, 1F) ppm. MS (m/z): 183 (M⁺ +1, 34.96); 182 (M⁺, 11.72); 137 (M⁺ – EtO, 50.24); 109 (M⁺ – CO₂Et, 44.39); 95 (CF₂=CFCH₂, 62.77); 81 (CF₂=CF, 19.30); 42 (COCH₂, 100). Analysis: Calc. for C₇H₉F₃O₂: C, 46.18; H, 4.94; F, 31.36%. Found: C, 46.40; H, 4.86; F, 31.22%.

Ethyl 4,5,5-trifluoro-2-methyl-4-pentenoate (4e): B.p. 83–84 °C/15 mmHg. IR ν_{max} (cm⁻¹): 1785 (CF₂=CF); 1725 (C=O). ¹H NMR δ : 0.87–1.27 (m, 6H); 1.97–2.97 (m, 3H); 4.00 (q, J=7.0 Hz, 2H) ppm. ¹⁹F NMR δ : 29.7 (dd, J=100, 40 Hz, 1F); 48.2 (dd, J=120, 100 Hz, 1F); 98.1 (dm, J=120 Hz, 1F) ppm. MS (*m*/*z*): 196 (M⁺, 3.94); 116 (M⁺+1-CF₂=CF, 100); 111 (CH₃CHCO₂Et, 25.99); 97 (CH₃CO₂Et, 55.35); 95

 $(CF_2 = CFCH_2, 3.56); 82 (CF_2 = CFH, 43.80).$ Analysis: Calc. for $C_8H_{11}F_3O_2$: C, 49.00; H, 5.61; F, 29.07%. Found: C, 49.23; H, 5.56; F, 29.23%.

4,5,5-Trifluoro-4-pentenamide (**4f**): M.p. 74.0–75.5 °C. IR ν_{max} (cm⁻¹): 3300, 3400 (NH₂); 1800 (CF₂=CF); 1650 (C=O). ¹H NMR (CDCl₃) δ : 1.60–2.20 (m, 4H); 6.00–7.20 (m, 2H) ppm. ¹⁹F NMR (CDCl₃) δ : 27.2 (dd, J = 100, 40 Hz, 1F); 45.8 (dd, J = 120, 100 Hz, 1F); 98.2 (dm, J = 120 Hz, 1F) ppm. MS (m/z): 153 (M⁺, 100); 95 (CF₂=CFCH₂, 89.72); 81 (CF₂=CF, 25.69); 58 (CH₂CONH₂, 66.95). Analysis: Calc. for C₅H₆F₃NO: C,39.24; H, 3.92; N, 9.15; F, 37.24%. Found: C, 39.68; H, 3.76; F, 37.89; N, 9.25%.

4,5,5-Trifluoro-4-pentenenitrile (**4g**): B.p. 100–102 °C/ 100 mmHg. IR ν_{max} (cm⁻¹): 2180 (CN); 1785 (CF₂=CF). ¹H NMR δ : 2.27–2.87 (m, 4H) ppm. ¹⁹F NMR δ : 29.1 (dd, J = 100, 40 Hz, 1F); 47.4 (dd, J = 120, 100 Hz, 1F); 101.1 (dm, J = 120 Hz, 1F) ppm. MS (m/z): 136 (M⁺ + 1, 9.04); 135 (M⁺, 6.46); 109 (M⁺ - CN, 4.63); 95 (CF₂=CFCH₂, 77.01); 81 (CF₂=CF, 8.00); 54 (M⁺ - CF₂=CF, 100). Analysis: Calc. for C₅H₄F₃N: C, 44.14; H, 2.94; F, 42.22; N, 10.29%. Found: C, 44.02; H, 2.86; F, 42.07; N, 10.48%.

5,6,6-Trifluoro-5-hexen-2-one (**4h**): B.p. 65–66 °C/30 mmHg. IR ν_{max} (cm⁻¹): 1725 (C=O); 1810 (CF₂=CF). ¹H NMR δ : 1.87 (s, 3H); 1.97–2.57 (m, 4H) ppm. ¹⁹F NMR δ : 27.8 (dd, J = 100, 40 Hz, 1F); 46.7 (dd, J = 120, 100 Hz, 1F); 98.0 (dm, J = 120 Hz, 1F) ppm. MS (m/z): 152 (M⁺, 10.49); 109 (M⁺ – CH₃CO, 8.62); 95 (CF₂=CFCH₂, 29.44); 81 (CF₂=CF, 0.75); 57 (COCH₃, 8.19); 44 (HCOCH₃, 100). Analysis: Calc. for C₆H₇F₃O: C, 47.37; H, 4.60; F, 37.50%. Found: C, 46.99; H, 4.56; F, 37.22%.

References

- 1 J. Mohtasham, G.L. Gard, Z.-Y. Yang and D.J. Burton, J. Fluorine Chem., 50 (1990) 31.
- 2 M.-H. Hung, A.-C. Su, W.-Y. Huang and Y.-F. Zhang, US Pat. 5 043 490 (1991); [Chem. Abs., 115 (1991) 2 318 36m].
- 3 C.-M. Hu and F.-L. Qing, J. Fluorine Chem., 49 (1990) 275; ibid., Tetrahedron Lett., 31 (1990) 1307.
- 4 C.-M. Hu and Y.-L. Qiu, *Tetrahedron Lett.*, 32 (1991) 4001.
 5 C.-M. Hu and J. Chen, J. Chem. Soc., Chem. Commun., (1993) 72.